好好学习,天天向上,思潮学习网欢迎您!
当前位置:首页 >  高中 >  高一 > 内容页

高一数学下学期知识点总结

2022-12-10 10:50:08高一访问手机版0

导语】高一新生要作好充分思想准备,以自信、宽容的心态,尽快融入集体,适应新同学、适应新校园环境、适应与初中迥异的纪律制度。记住:是你主动地适应环境,而不是环境适应你。因为你走向社会参加工作也得适应社会。以下内容是©思潮学习网为你整理的《高一数学下学期知识点总结》,希望你不负时光,努力向前,加油!

1.高一数学下学期知识点总结

  求函数值域的方法

  ①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;

  ②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;

  ③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且∈R的分式;

  ④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);

  ⑤单调性法:利用函数的单调性求值域;

  ⑥图象法:二次函数必画草图求其值域;

  ⑦利用对号函数

  ⑧几何意义法:由数形结合,转化距离等求值域。主要是含绝对值函数

2.高一数学下学期知识点总结

  幂函数定义:

  形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

  定义域和值域:

  当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域

3.高一数学下学期知识点总结

  三角函数公式

  两角和公式

  sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA

  cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

  倍角公式

  tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctga

  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

  半角公式

  sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)

  cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)

  tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))

  ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))

  和差化积

  2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)

  2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)

  sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

  tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosB

  ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB

4.高一数学下学期知识点总结

  空间直线

  (1)空间两条直线的位置关系

  ①相交直线:有且仅有一个公共点,可表示为;

  ②平行直线:在同一个平面内,没有公共点,可表示为a//b;

  ③异面直线:不同在任何一个平面内,没有公共点.

  (2)平行直线

  公理:平行于同一条直线的两条直线互相平行.

  定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.

  (3)两条异面直线所成的角

  注意:

  ①两条异面直线a,b所成的角的范围是(0°,90°].

  ②两条异面直线所成的角与点O的选择位置无关,这可由前面所讲过的“等角定理”直接得出.

  ③由两条异面直线所成的角的定义可得出异面直线所成角的一般方法:

  (i)在空间任取一点,这个点通常是线段的中点或端点.

  (ii)分别作两条异面直线的平行线,这个过程通常采用平移的方法来实现.

  (iii)指出哪一个角为两条异面直线所成的角,这时我们要注意两条异面直线所成的角的范围.

5.高一数学下学期知识点总结

  直线和平面垂直

  直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直,直线a叫做平面的垂线,平面叫做直线a的垂面。

  直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。

  直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

  直线和平面平行——没有公共点

  直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

  直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

  直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

6.高一数学下学期知识点总结

  二面角

  (1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。

  (2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为[0°,180°]

  (3)二面角的棱:这一条直线叫做二面角的棱。

  (4)二面角的面:这两个半平面叫做二面角的面。

  (5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

  (6)直二面角:平面角是直角的二面角叫做直二面角。

  esp.两平面垂直

  两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。记为⊥

  两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直

  两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。

高一数学下学期知识点总结