好好学习,天天向上,思潮学习网欢迎您!
当前位置:首页 >  高中 >  高一 > 内容页

高一年级数学下学期知识点整理

2022-12-10 10:49:53高一访问手机版0

导语】高中阶段学习难度、强度、容量加大,学习负担及压力明显加重,不能再依赖初中时期老师“填鸭式”的授课,“看管式”的自习,“命令式”的作业,要逐步培养自己主动获取知识、巩固知识的能力,制定学习计划,养成自主学习的好习惯。今天®思潮学习网高一频道为正在拼搏的你整理了《高一年级数学下学期知识点整理》,希望以下内容可以帮助到您!

1.高一年级数学下学期知识点整理

  求函数定义域

  常见的用解析式表示的函数f(x)的定义域可以归纳如下:

  ①当f(x)为整式时,函数的定义域为R.

  ②当f(x)为分式时,函数的定义域为使分式分母不为零的实数集合。

  ③当f(x)为偶次根式时,函数的定义域是使被开方数不小于0的实数集合。

  ④当f(x)为对数式时,函数的定义域是使真数为正、底数为正且不为1的实数集合。

  ⑤如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合,即求各部分有意义的实数集合的交集。

  ⑥复合函数的定义域是复合的各基本的函数定义域的交集。

  ⑦对于由实际问题的背景确定的函数,其定义域除上述外,还要受实际问题的制约。

2.高一年级数学下学期知识点整理

  集合与元素

  一个东西是集合还是元素并不是绝对的,很多情况下是相对的,集合是由元素组成的集合,元素是组成集合的元素。

  例如:你所在的班级是一个集合,是由几十个和你同龄的同学组成的集合,你相对于这个班级集合来说,是它的一个元素;而整个学校又是由许许多多个班级组成的集合,你所在的班级只是其中的一分子,是一个元素。

  班级相对于你是集合,相对于学校是元素,参照物不同,得到的结论也不同,可见,是集合还是元素,并不是绝对的。

  解集合问题的关键:弄清集合是由哪些元素所构成的,也就是将抽象问题具体化、形象化,将特征性质描述法表示的集合用列举法来表示,或用韦恩图来表示抽象的集合,或用图形来表示集合;比如用数轴来表示集合,或是集合的元素为有序实数对时,可用平面直角坐标系中的图形表示相关的集合等。

3.高一年级数学下学期知识点整理

  方程的根与函数的零点

  1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

  2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:

  方程有实数根函数的图象与轴有交点函数有零点.

  3、函数零点的求法:

  求函数的零点:

  1(代数法)求方程的实数根;

  2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.

  4、二次函数的零点:

  二次函数.

  1、△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.

  2、△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.

  3、△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.

4.高一年级数学下学期知识点整理

  1.作法与图形:通过如下3个步骤

  (1)列表;

  (2)描点;

  (3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)

  2.性质:

  (1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

  (2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

  3.k,b与函数图像所在象限:

  当k>0时,直线必通过一、三象限,y随x的增大而增大;

  当k<0时,直线必通过二、四象限,y随x的增大而减小。

  当b>0时,直线必通过一、二象限;

  当b=0时,直线通过原点

  当b<0时,直线必通过三、四象限。

  特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

  这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

5.高一年级数学下学期知识点整理

  1.多面体的结构特征

  (1)棱柱的上下底面平行,侧棱都平行且长度相等,上底面和下底面是全等的多边形.

  (2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.

  (3)棱台可由平行于棱锥底面的'平面截棱锥得到,其上下底面的两个多边形相似.

  2.旋转体的结构特征

  (1)圆柱可以由矩形绕其一边所在直线旋转得到.

  (2)圆锥可以由直角三角形绕其一条直角边所在直线旋转得到.

  (3)圆台可以由直角梯形绕直角腰所在直线或等腰梯形绕上下底中点的连线旋转得到,也可由平行于圆锥底面的平面截圆锥得到.

  (4)球可以由半圆或圆绕其直径旋转得到.

  3.空间几何体的三视图

  空间几何体的三视图是用正投影得到,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是完全相同的,三视图包括主视图、左视图、俯视图.

  4.空间几何体的直观图

  (1)在已知图形中建立直角坐标系xOy.画直观图时,它们分别对应x轴和y轴,两轴交于点O,使xOy=45,它们确定的平面表示水平平面;

  (2)已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x轴和y轴的线段;

  (3)已知图形中平行于x轴的线段,在直观图中保持原长度不变;平行于y轴的线段,长度为原来的.

6.高一年级数学下学期知识点整理

  1.“包含”关系—子集

  注意:有两种可能

  (1)A是B的一部分

  (2)A与B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

  2.“相等”关系(5≥5,且5≤5,则5=5)

  实例:设A={——2-1=0}B={-1,1}“元素相同”

  结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

  ①任何一个集合是它本身的子集。AíA

  ②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)

  ③如果AíB,BíC,那么AíC

  ④如果AíB同时BíA那么A=B

  3.不含任何元素的集合叫做空集,记为Φ

  规定:空集是任何集合的子集,空集是任何非空集合的真子集

高一年级数学下学期知识点整理