好好学习,天天向上,思潮学习网欢迎您!
当前位置:首页 >  高中 >  高三 > 内容页

高三数学下册优秀说课稿

2022-12-10 11:17:54高三访问手机版0

【导语】一轮复习中,考生依据课本对基础知识点和考点,进行了全面的复习扫描,已建构起高考基本的学科知识、学科能力和思维方法。二轮复习是承上启下的重要一环,要在一轮复习的基础上,依据考纲,落实重点,突破难点,找准自己的增长点,提高复习备考的实效性。©思潮学习网整理了《高三数学下册优秀说课稿》欢迎阅读!

1.高三数学下册优秀说课稿

  一、说教材

  1、教材的内容、地位及编排依据

  本节主要研究反证法的概念以及反证法证明问题的一般步骤。在上一节中,我们已经学习了直接证明,但是对于有的题目,要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰;或者如果从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形。所以,教材在直接证明之后安排反证法的内容是很有必要的。

  2、教学目标

  (1)知识目标:理解反证法的概念,掌握反证法的证题步骤;

  (2)能力目标:培养学生类比推理的能力以及自主探究数学问题的能力;

  (3)德育目标:培养他们勇于探索和创新精神以及优化他们的个性品质;

  (4)情感目标:构造和谐的教学氛围,增加互动,促进师生情感交流。

  3、教学的重点、难点、关键

  [重点]从生活实例抽象出反证法的概念、步骤;

  [难点]证明方法的选择;

  [关键]在反证法中如何在正确的推理下得出矛盾。

  二、说教法与学法

  1、教法

  在教学过程中采用设问、引导、启发、发现等教学方法,灵活运用多媒体手段,以学生为主体,创设和谐、愉悦互动的环境。让学生在轻松愉悦的环境中学到数学知识。

  2、学法

  学生通过两个生活中的例子得到启发:证明问题还可以从结论的反面出发,得出矛盾后,就说明原结论的正确性。并且内比其中的一个例子,得到反证法证明问题的一般步骤。然后通过老师例题的讲解,进一步体会到反证法的关键以及怎样得到矛盾。最后通过练习两个题目,更进一步体会到反证法的作用。

  三、采用教具

  多媒体

2.高三数学下册优秀说课稿

  一、说教材

  教材是连接教师和学生的纽带,在整个教学过程中起着至关重要的作用,所以,先谈谈我对教材的理解。

  正弦函数的性质是选自北师大版高中数学必修四第一章三角函数第五节正弦函数的性质与图象5.3正弦函数的性质的资料,主要资料便是正弦函数的性质,教材经过作图、观察、诱导公式等方法得出正弦函数y=sinx的性质。并且教材突出了正弦函数图象的重要性,能够帮忙学生更深刻的认识、理解、记忆正弦函数的性质。

  二、说学情

  合理把握学情是上好一堂课的基础,本次课所应对的学生群体具有以下特点。

  高中的学生掌握了必须的基础知识,思维较敏捷,动手本事较强,但理解本事、自主学习本事较缺乏。基于此,本节课注重引导学生动脑思考,更富有启发性。并且学生的自尊心较强,所以对学生的评价注重先扬后抑,鼓励学生多多发言,还能够对学生进行正确引导。

  三、说教学目标

  根据以上对教材的分析以及对学情的把握,我制定了如下三维目标:

  (一)知识与技能

  会用正弦函数图象研究和理解正弦函数的性质,能熟练运用正弦函数的性质解决问题。

  (二)过程与方法

  经过正弦函数的图象,探索正弦函数的性质,提升逻辑思考、归纳总结的本事。

  (三)情感态度价值观

  经过本节的学习体验数学的严谨性,养成细心观察、认真分析、严谨认真的良好思维习惯和不断探求新知识的精神。

  四、说教学重难点

  本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点

  (一)教学重点

  由正弦函数的图象得到正弦函数的性质。

  (二)教学难点

  正弦函数的周期性和单调性。

3.高三数学下册优秀说课稿

  一、教材分析:

  1、教材的地位与作用:

  线性规划是运筹学的一个重要分支,在实际生活中有着广泛的应用。本节内容是在学习了不等式、直线方程的基础上,利用不等式和直线方程的有关知识展开的,它是对二元一次不等式的深化和再认识、再理解。通过这一部分的学习,使学生进一步了解数学在解决实际问题中的应用,体验数形结合和转化的思想方法,培养学生学习数学的兴趣、应用数学的意识和解决实际问题的能力。

  2、教学重点与难点:

  重点:画可行域;在可行域内,用图解法准确求得线性规划问题的解。

  难点:在可行域内,用图解法准确求得线性规划问题的解。

  二、目标分析:

  在新课标让学生经历“学数学、做数学、用数学”的理念指导下,本节课的教学目标分设为知识目标、能力目标和情感目标。

  知识目标:

  1、了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行域和解等概念;

  2、理解线性规划问题的图解法;

  3、会利用图解法求线性目标函数的解。

  能力目标:

  1、在应用图解法解题的过程中培养学生的观察能力、理解能力。

  2、在变式训练的过程中,培养学生的分析能力、探索能力。

  3、在对具体事例的感性认识上升到对线性规划的理性认识过程中,培养学生运用数形结合思想解题的能力和化归能力。

  情感目标:

  1、让学生体验数学来源于生活,服务于生活,体验数学在建设节约型社会中的作用,品尝学习数学的乐趣。

  2、让学生体验数学活动充满着探索与创造,培养学生勤于思考、勇于探索的精神;

  3、让学生学会用运动观点观察事物,了解事物之间从一般到特殊、从特殊到一般的辨证关系,渗透辩证唯物主义认识论的思想。

  三、过程分析:

  数学教学是数学活动的教学。因此,我将整个教学过程分为以下六个教学环节:

  1、创设情境,提出问题;

  2、分析问题,形成概念;

  3、反思过程,提炼方法;

  4、变式演练,深入探究;

  5、运用新知,解决问题;

  6、归纳总结,巩固提高。

4.高三数学下册优秀说课稿

  一、说教材:

  1、教材的地位与作用

  2、教学的重点、难点、关键

  教学重点:XX

  教学难点:XX

  1)从割线到切线的过程中采用的逼近方法;

  2)理解导数的概念,将多方面的意义联系起来,例如,导数反映了函数f(x)在点x附近的变化快慢,导数是曲线上某点切线的斜率,等等。

  二、说教学目标:

  根据新课程标准的要求、学生的认知水平,确定教学目标如下:

  1、知识与技能:

  通过实验探求理解导数的几何意义,理解曲线在一点的切线的概念,会求简单函数在某点的切线方程。

  2、过程与方法:

  经历切线定义的形成过程,培养学生分析、抽象、概括等思维能力;体会导数的思想及内涵,完善对切线的认识和理解

  通过逼近、数形结合思想的具体运用,使学生达到思维方式的迁移,了解科学的思维方法。

  3、情感态度与价值观:

  渗透逼近、数形结合、以直代曲等数学思想,激发学生学习兴趣,引导学生领悟特殊与一般、有限与无限,量变与质变的辩证关系,感受数学的统一美,意识到数学的应用价值

  三、说教法与学法

  对于直线来说它的导数就是它的斜率,学生会很自然的思考导数在函数图像上是不是有很特殊的几何意义。而且刚刚学过了圆锥曲线,学生对曲线的切线的概念也有了一些认识,基于以上学情分析,我确定下列教法:

  教法:从圆的切线的定义引入本课,再引导学生讨论一般曲线的切线的定义,通过几何画板的动画演示,得出曲线的切线的“逼近”法的定义.同样通过几何画板的实验观察得到导数的几何意义和直观感知“逼近”的数学思想.因此,我采用实验观察法、探究性研究教学和信息技术辅助教学法相结合,以突出重点和突破难点;

  学法:为了发挥学生的主观能动性,提高学生的综合能力,本节课采取了自主、合作、探究的学习方法。

  教具:几何画板、幻灯片

5.高三数学下册优秀说课稿

  一、教学目标

  (一)知识与技能

  1、进一步熟练掌握求动点轨迹方程的基本方法。

  2、体会数学实验的直观性、有效性,提高几何画板的操作能力。

  (二)过程与方法

  1、培养学生观察能力、抽象概括能力及创新能力。

  2、体会感性到理性、形象到抽象的思维过程。

  3、强化类比、联想的方法,领会方程、数形结合等思想。

  (三)情感态度价值观

  1、感受动点轨迹的动态美、和谐美、对称美。

  2、树立竞争意识与合作精神,感受合作交流带来的成功感,树立自信心,激发提出问题和解决问题的勇气。

  二、教学重点与难点

  教学重点:运用类比、联想的方法探究不同条件下的轨迹。

  教学难点:图形、文字、符号三种语言之间的过渡。

  三、教学方法和手段

  教学方法:观察发现、启发引导、合作探究相结合的教学方法。启发引导学生积极思考并对学生的思维进行调控,帮助学生优化思维过程,在此基础上,提供给学生交流的机会,帮助学生对自己的思维进行组织和澄清,并能清楚地、准确地表达自己的数学思维。

  教学手段:利用网络教室,四人一机,多媒体教学手段。通过上述教学手段,一方面:再现知识产生的过程,通过多媒体动态演示,突破学生在旧知和新知形成过程中的障碍(静态到动态);另一方面:节省了时间,提高了课堂教学的效率,激发了学生学习的兴趣。

  教学模式:重点中学实施素质教育的课堂模式“创设情境、激发情感、主动发现、主动发展”。

高三数学下册优秀说课稿