好好学习,天天向上,思潮学习网欢迎您!
当前位置:首页 >  高中 >  高二 > 内容页

高二上学期数学知识点总结

2022-12-10 11:04:23高二访问手机版0
【导语】在学习新知识的同时还要复习以前的旧知识,肯定会累,所以要注意劳逸结合。只有充沛的精力才能迎接新的挑战,才会有事半功倍的学习。®思潮学习网高二频道为你整理了《高二上学期数学知识点总结》希望对你的学习有所帮助!15341465268726103.jpg

1.高二上学期数学知识点总结

  等腰直角三角形面积公式:

  S=a2/2,S=ch/2=c2/4(其中a为直角边,c为斜边,h为斜边上的高)。

  面积公式

  若假设等腰直角三角形两腰分别为a,b,底为c,则可得其面积:

  S=ab/2。

  且由等腰直角三角形性质可知:底边c上的高h=c/2,则三角面积可表示为:

  S=ch/2=c2/4。

  等腰直角三角形是一种特殊的三角形,具有所有三角形的性质:稳定性,两直角边相等直角边夹一直角锐角45°,斜边上中线角平分线垂线三线合一。

  反正弦函数的导数:正弦函数y=sinx在[-π/2,π/2]上的反函数,叫做反正弦函数。记作arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。定义域[-1,1],值域[-π/2,π/2]。

2.高二上学期数学知识点总结

  已知函数有零点(方程有根)求参数取值常用的方法

  1、直接法:

  直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围。

  2、分离参数法:

  先将参数分离,转化成求函数值域问题加以解决。

  3、数形结合法:

  先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解。

3.高二上学期数学知识点总结

  判断函数零点个数的常用方法

  1、解方程法:

  令f(x)=0,如果能求出解,则有几个解就有几个零点。

  2、零点存在性定理法:

  利用定理不仅要判断函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点。

  3、数形结合法:

  转化为两个函数的图象的交点个数问题。先画出两个函数的图象,看其交点的个数,其中交点的个数,就是函数零点的个数。

4.高二上学期数学知识点总结

  1.辗转相除法是用于求公约数的一种方法,这种算法由欧几里得在公元前年左右首先提出,因而又叫欧几里得算法.

  2.所谓辗转相法,就是对于给定的两个数,用较大的数除以较小的数.若余数不为零,则将较小的数和余数构成新的一对数,继续上面的除法,直到大数被小数除尽,则这时的除数就是原来两个数的公约数.

  3.更相减损术是一种求两数公约数的方法.其基本过程是:对于给定的两数,用较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等为止,则这个数就是所求的公约数.

  4.秦九韶算法是一种用于计算一元二次多项式的值的方法.

  5.常用的排序方法是直接插入排序和冒泡排序.

  6.进位制是人们为了计数和运算方便而约定的记数系统.“满进一”,就是k进制,进制的基数是k.

  7.将进制的数化为十进制数的方法是:先将进制数写成用各位上的数字与k的幂的乘积之和的形式,再按照十进制数的运算规则计算出结果.

  8.将十进制数化为进制数的方法是:除k取余法.即用k连续去除该十进制数或所得的商,直到商为零为止,然后把每次所得的余数倒着排成一个数就是相应的进制数.

5.高二上学期数学知识点总结

  (1)总体和样本

  ①在统计学中,把研究对象的全体叫做总体.

  ②把每个研究对象叫做个体.

  ③把总体中个体的总数叫做总体容量.

  ④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,_研究,我们称它为样本。其中个体的个数称为样本容量。

  (2)简单随机抽样,也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。简单随机抽样是其它各种抽样形式的基础。通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

  (3)简单随机抽样常用的方法:

  ①抽签法

  ②随机数表法

  ③计算机模拟法

  在简单随机抽样的样本容量设计中,主要考虑:

  ①总体变异情况;

  ②允许误差范围;

  ③概率保证程度。

  (4)抽签法:

  ①给调查对象群体中的每一个对象编号;

  ②准备抽签的工具,实施抽签;

  ③对样本中的每一个个体进行测量或调查

6.高二上学期数学知识点总结

  导数的应用

  1.用导数研究函数的最值

  确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。学习了如何用导数研究函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。

  2.生活中常见的函数优化问题

  1)费用、成本最省问题

  2)利润、收益问题

  3)面积、体积最(大)问题

高二上学期数学知识点总结