好好学习,天天向上,思潮学习网欢迎您!
当前位置:首页 >  初中 >  初二 > 内容页

数学初二期中上册复习资料

2022-12-10 10:32:14初二访问手机版0

【导语】学习时集中精力,养成良好学习习惯,是节省学习时间和提高学习效率的最为基本的方法。©思潮学习网搜集的《数学初二期中上册复习资料》,希望对同学们有帮助。

  

1.数学初二期中上册复习资料

  第一章勾股定理

  1、探索勾股定理

  勾股定理:直角三角形两直角边的平方和等于斜边的平方,如果用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2。

  2、一定是直角三角形吗

  如果三角形的三边长abc满足a2+b2=c2,那么这个三角形一定是直角三角形。

  3、勾股定理的应用

  第二章实数

  1、认识无理数

  ①有理数:总是可以用有限小数和无限循环小数表示。

  ②无理数:无限不循环小数。

  2、平方根

  ①算数平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算数平方根。

  ②特别地,我们规定:0的算数平方根是0。

  ③平方根:一般地,如果一个数x的平方等于a,即x2=a。那么这个数x就叫做a的平方根,也叫做二次方根。

  ④一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。

  ⑤正数有两个平方根,一个是a的算数平方,另一个是—,它们互为相反数,这两个平方根合起来可记作±。

  ⑥开平方:求一个数a的平方根的运算叫做开平方,a叫做被开方数。

  3、立方根

  ①立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根,也叫三次方根。

  ②每个数都有一个立方根,正数的立方根是正数;0立方根是0;负数的立方根是负数。

  ③开立方:求一个数a的立方根的运算叫做开立方,a叫做被开方数。

  4、估算

  估算,一般结果是相对复杂的小数,估算有精确位数。

  5、用计算机开平方

  6、实数

  ①实数:有理数和无理数的统称。

  ②实数也可以分为正实数、0、负实数。

  ③每一个实数都可以在数轴上表示,数轴上每一个点都对应一个实数,在数轴上,右边的点永远比左边的点表示的数大。

  7、二次根式

  ①含义:一般地,形如(a≥0)的式子叫做二次根式,a叫做被开方数。

  ②最简二次根式:一般地,被开方数不含分母,也不含能开的尽方的因数或因式,这样的二次根式,叫做最简二次根式。

  ③化简时,通常要求最终结果中分母不含有根号,而且各个二次根式时最简二次根式。

  第三章位置与坐标

  1、确定位置

  在平面内,确定一个物体的位置一般需要两个数据。

  2、平面直角坐标系

  ①含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

  ②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或者横轴,竖直的数轴叫y轴和纵轴,二者统称为坐标轴,它们的公共原点o被称为直角坐标系的原点。

  ③建立了平面直角坐标系,平面内的点就可以用一组有序实数对来表示。

  ④在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆时针方向叫做第二象限,第三象限,第四象限,坐标轴上的点不在任何一个象限。

  ⑤在直角坐标系中,对于平面上任意一点,都有的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上的一点与它对应。

  3、轴对称与坐标变化

  关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数。

  

2.数学初二期中上册复习资料

  第四章一次函数

  1、函数

  ①一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有的值与它对应,那么我们称y是x的函数其中x是自变量

  ②表示函数的方法一般有:列表法、关系式法和图象法

  ③对于自变量在可取值范围内的一个确定的值a,函数有确定的对应值,这个对应值称为当自变量等于a的函数值

  2、一次函数与正比例函数

  若两个变量x,y间的对应关系可以表示成y=kx+b(k、b为常数,k≠0)的形式,则称y是x的一次函数,特别的,当b=0时,称y是x的正比例函数

  3、一次函数的图像

  ①正比例函数y=kx的图像是一条经过原点(0,0)的直线。因此,画正比例函数图像是,只要再确定一点,过这个点与原点画直线就可以了。

  ②在正比例函数y=kx中,当k>0时,y的值随着x值的增大而减小;当k<0时,y的值随着x的值增大而减小。

  ③一次函数y=kx+b的图像是一条直线,因此画一次函数图像时,只要确定两个点,再过这两点画直线就可以了。一次函数y=kx+b的图像也称为直线y=kx+b。

  ④一次函数y=kx+b的图像经过点(0,b)。当k>0时,y的值随着x值的增大而增大;当k<0时,y的值随着x值的增大而减小。

  4、一次函数的应用

  一般地,当一次函数y=kx+b的函数值为0时,相应的自变量的值就是方程kx+b=0的解,从图像上看,一次函数y=kx+b的图像与x轴交点的横坐标就是方程kx+b=0。

  第五章二元一次方程组

  1、认识二元一次方程组

  ①含有两个未知数,并且所含有未知数的项的次数都是1的方程叫做二元一次方程。

  ②共含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。

  ③二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。

  2、求解二元一次方程组

  ①将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代入消元法,简称代入法。

  ②通过两式子加减,消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法。

  

3.数学初二期中上册复习资料

  1、平均数

  ①一般地,对于n个数x1x2...xn,我们把(x1+x2+···+xn)叫做这n个数的算数平均数,简称平均数记为。

  ②在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数。

  2、中位数与众数

  ①中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

  ②一组数据中出现次数最多的那个数据叫做这组数据的众数。

  ③平均数、中位数和众数都是描述数据集中趋势的统计量。

  ④计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但他容易受极端值影响。

  ⑤中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的信息。

  ⑥各个数据重复次数大致相等时,众数往往没有特别意义。

  3、从统计图分析数据的集中趋势。

  4、数据的离散程度

  ①实际生活中,除了关心数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的偏离情况。一组数据中数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量。

  ②数学上,数据的离散程度还可以用方差或标准差刻画。

  ③方差是各个数据与平均数差的平方的平均数。

  ④其中是x1,x2.....xn平均数,s2是方差,而标准差就是方差的算术平方根。

  ⑤一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。

  

4.数学初二期中上册复习资料

  中线

  1、等腰三角形底边上的中线垂直底边,平分顶角;

  2、等腰三角形两腰上的中线相等,并且它们的交点与底边两端点距离相等。

  1、两边上中线相等的三角形是等腰三角形;

  2、如果一个三角形的一边中线垂直这条边(平分这个边的对角),那么这个三角形是等腰三角形。

  角平分线

  1、等腰三角形顶角平分线垂直平分底边;

  2、等腰三角形两底角平分线相等,并且它们的交点到底边两端点的距离相等。

  1、如果三角形的顶角平分线垂直于这个角的对边(平分对边),那么这个三角形是等腰三角形;

  2、三角形中两个角的平分线相等,那么这个三角形是等腰三角形。

  高线

  1、等腰三角形底边上的高平分顶角、平分底边;

  2、等腰三角形两腰上的高相等,并且它们的交点和底边两端点距离相等。

  1、如果一个三角形一边上的高平分这条边(平分这条边的对角),那么这个三角形是等腰三角形;

  2、有两条高相等的三角形是等腰三角形。

  

5.数学初二期中上册复习资料

  因式分解

  1.因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化。

  2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”。

  3.公因式的确定:系数的公约数?相同因式的最低次幂。

  注意公式:a+b=b+a;a-b=-(b-a);(a-b)2=(b-a)2;(a-b)3=-(b-a)3。

  4.因式分解的公式:

  (1)平方差公式:a2-b2=(a+b)(a-b);

  (2)完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.

  5.因式分解的注意事项:

  (1)选择因式分解方法的一般次序是:一提取、二公式、三分组、四十字;

  (2)使用因式分解公式时要特别注意公式中的字母都具有整体性;

  (3)因式分解的最后结果要求分解到每一个因式都不能分解为止;

  (4)因式分解的最后结果要求每一个因式的首项符号为正;

  (5)因式分解的最后结果要求加以整理;

  (6)因式分解的最后结果要求相同因式写成乘方的形式。

数学初二期中上册复习资料